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Figure 1: The architecture enhances graph modeling by boosting intra-cluster similarity and uncover patterns in Cluster-GCN.
Attention mechanisms refine this clustering by weighting edges, capturing nuanced structures and improving accuracy. The
Dueling DDQN generate the contextually relevant and personalized recommendations by user interactions and feedbacks.

Abstract

With growing environmental concerns and the push for sustainable
urban development, promoting green travel has become a critical
initiative. Urban transit systems face the challenge of integrating
green initiatives with efficient transport routes, while sophisticated
graph modeling enhances travel efficiency. However, blending his-
torical and contemporary elements introduces complex variations
in traffic networks, complicating feature extraction and clustering
for information retrieval due to multi-scale spatial heterogeneity.
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Traditional methods often overlook key nuances by oversimplifying
data relationships. We proposed M3 and validated the integration
of GIS-based Attention-Cluster-GCN with Dueling Double Deep Q
Network across various cities, enhancing urban travel with detailed
information on green attraction recommendations, considering the
usage of Multi-Purpose and Multi-Stakeholder for Multi-Scale Spa-
tial Heterogeneity scenarios. Utilizing Attention-Based Reinforce-
ment Graph Clustering refines modeling and emphasizes vital con-
nections, enhancing personalized recommendation precision and
clustering performance. Our method surpasses both conventional
and advanced GNN methods, even in graph convolution-based deep
reinforcement learning, achieving superior cluster separation and
accuracy. Our sampling and ablation studies confirm the pivotal
role of the attention mechanism and multi-scale features, showing
a significant performance decline without attention. Our findings
underscore the potential of graph clustering in making public trans-
port more engaging and aligned with green attractions policies by
recommendations, even amidst significant spatial heterogeneity.
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1 Introduction

Urban areas with abundant greenery—such as parks, scenic walk-
ways, and eco-friendly spaces—offer significant value to both res-
idents and visitors. We refer to such locations as "Green Attrac-
tions". Imagine a local citizen or tourist planning an eco-conscious
day trip: their travel needs vary widely across city zones. In well-
connected cities like New York or Tokyo, subways provide easy
access to green attractions. However, in many smaller or developing
cities, public transport is limited to buses due to the absence of a
subway system, which complicates access the green attractions
due to inconsistent routes and coverage.

The first problem comes from the bottleneck of Multi-Scale
Spatial Heterogeneity, referring to the varying characteristics
of urban areas that can include differences in land use, population
density, and infrastructure among various city zones. These dis-
crepancies present unique challenges for transportation and urban
planning, especially when integrating sustainable initiatives like
green travel. Second, Multi-Purpose indicates that the green at-
traction recommendation system serves diverse purposes, catering
to both environmental sustainability and recreational planning.
For instance, a user might wish to visit green attractions for re-
laxation, exercise, or education, each requiring distinct itineraries
and transport planning. Third, the system is designed to integrate
and balance the needs of Multi-Stakeholder, including tourists,
residents, public transport passengers, and end-users. For example,
tourists might prioritize maximizing public transport utilization,
while residents seek convenience and eco-friendliness.

Our system tackles these challenges by mapping green attrac-
tions to bus stations based on their locations, adapting recommen-
dations to time and place, and providing several optimal places
through clustering, considering road networks and green spaces to
enhance recommendation accuracy in the diverse spatial contexts
of different urban environments. This approach not only meets
diverse travel needs but also supports sustainable travel initiatives,
navigating the complexities of cities that blend historic neighbor-
hoods with modern developments and have varied traffic patterns.

We introduce M3, a GIS-based Attention based Cluster-GCN
[7] to enhance feature extraction with urban spatial heterogeneity,
with Dueling Double Deep Q Network (Dueling DDQN) [13, 26]
to improve the accuracy of green attraction recommendations in
different user groups with policy adaptation. The system promotes
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public transport and environmental awareness via a spatial graph
data pipeline for Point-Of-Interest (POI) recommendation while
handling the complex relationships in multi-scale spatial hetero-
geneity. Our model accommodates such multi-purpose scenarios
by providing clustered recommendations that adapt to user in-
tent and spatiotemporal factors, ensuring that results align with
varied personal or societal goals. By incorporating stakeholder ob-
jectives through adaptive clustering and reinforcement learning
(RL) techniques, our model optimizes for both policy and user-
centered outcomes. This ensures a cohesive framework that aligns
with broader urban sustainability with multiple UN Sustainable
Development Goals (SDGs)[19], particularly targeting SDG11 for
sustainable cities and communities and SDGs 9 by enhancing in-
frastructural sustainability and fostering a positive environment
for local development.

For example, in cities served only by buses, sharp variations
in land use and population density (“multi-scale spatial hetero-
geneity”), diverse user purposes (e.g. exercise vs. sightseeing), and
competing stakeholder needs (tourists vs. residents) make green-
space recommendations challenging. Our goal is to convert a spa-
tial graph of bus stops and green POIs (input) into personalized,
context-aware ranked suggestions (output). With simplified exam-
ple of parks A, B, C and bus stops 1 & 2, we first use an Attention-
Cluster-GCN to group POIs by different geographic scales, then
encode a user’s intent (e.g. jogging vs. photography), and finally
train a Dueling DDQN agent to learn top-k recommendations.

This method integrates advanced graph processing and Q-learning
with green attraction recommendations for public transportation
in multi-scale spatial heterogeneity, showcasing the potential for
improved urban information management in tourism and trans-
portation with 3 main contributions, including:

¢ Refined Modeling with Attention and Dueling DDQN
Mechanisms: Utilizing attention mechanisms to weigh graph
edges enhances structural detail capture and clustering ac-
curacy. Dueling DDQN addresses the challenges of large,
complex action spaces by using a differentiable exploration
strategy that thoroughly evaluates all potential actions, en-
abling the system to uncover patterns in the data for more
effective recommendations.

e Enhanced Recommender by Multi-scale Clustering:
Our model enhances graph clustering with high intra-similarity
and supports detailed information on green attractions. We
adopts to environmental contexts at each bus stop, precisely
recommending green attractions in transportation.

o Scalability and Adaptability in Spatial Heterogeneity:
Designed to efficiently scale with urban data demands, our
system adjusts to changes without performance loss.

2 Related Works
2.1 Bus System in Spatial Heterogeneity

Research on planning bus routes based on spatial feature hetero-
geneity is abundant [6, 15, 20, 25], yet studies focusing on city-
specific or local characteristics for service-oriented approaches are
rare. This gap highlights the potential for integrating local distinc-
tiveness into public transportation planning, aiming to enhance
both service quality and user experience. One study [9] proposes
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a new zoning approach based on local traffic characteristics, ad-
dressing the gap in research on bus service zoning and advocating
for a shift towards localized, service-oriented planning. This con-
trasts with the prevalent focus on spatial feature heterogeneity
in bus route planning. Another piece of research [24] delves into
customized bus demand, employing spatial dynamics to underscore
the need for nuanced service strategies that consider a variety of
factors, highlighting a move towards addressing specific commu-
nity needs rather than just spatial heterogeneity. Additionally, an
examination of urban customized bus companies suggests a time-
dependent planning method to tackle route efficiency challenges
[11], illustrating a departure from conventional planning based on
spatial features alone and moving towards adaptive solutions that
consider temporal and spatial demand variations.

2.2 Cluster-Graph Convolutional Network

Prior to Cluster-GCN. In spatial data mining and recommenda-
tion systems, graph analysis methods like FastGCN (Chen et al.[4])
or GraphSAGE (Hamilton et al.[12]) enhance analysis through
neighbor aggregation or node sampling, accurately capturing graph
data’s inherent complexities and significantly outperforming tra-
ditional methods. Cluster-GCN (Graph Convolutional Network) ,
developed by Chiang et al. [7], enhances GNN scalability by parti-
tioning graphs into smaller clusters using algorithms such as METIS
[16] for effective mini-batch training. This method lowers compu-
tational needs and maintains graph integrity, broadening GNN’s
utility in fields like social network analysis and recommendation
systems. Its key contributions are: (1) Efficiency in Large Graphs:
Cluster-GCN’s clustering significantly lowers memory and compu-
tational demands, allowing for effective training on large datasets.
(2) Preservation of Graph Structure: It maintains structural in-
tegrity within clusters, unlike some sampling methods, enhancing
performance and accuracy. (3) Compatibility with Various GNN
Architectures: Its versatile clustering technique supports diverse
GNN architectures, expanding its utility and influence.
Improvements over Previous Methods. Previous methods
like GraphSAGE’s neighbor sampling and FastGCN’s layer-wise
propagation struggled with computation efficiency and model ac-
curacy, often sacrificing information integrity or failing to scale for
large graphs. Cluster-GCN addresses these issues by ensuring struc-
tural integrity within each cluster, preventing information loss and
enhancing training efficiency and accuracy on large-scale graphs,
redefining GNN scalability standards. Following Cluster-GCN’s
debut, subsequent studies like GraphSAINT (Zeng et al. [28]) and
VR-GCN (Chen et al. [5]) have refined graph analysis, targeting
efficiency and accuracy across fields such as recommendation sys-
tems and bioinformatics. Yet, Cluster-GCN’s major limitation lies in
its struggle to balance global and local graph information, heavily
influenced by the clustering algorithm’s effectiveness. This issue,
alongside the intensive computational demands of initial cluster-
ing and challenges with dynamic graphs, underscores the need for
advancements in real-time, adaptable graph analysis solutions.
Limitations. Cluster-GCN significantly advances GNN research,
addressing scalability and broadening use in large-scale graphs.
Despite its advancements, Cluster-GCN faces limitations, notably
its reliance on the clustering algorithm’s quality. Performance can
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Table 1: Statistics of Datasets.

City Bus Stops | POIs | Green Centroids | 100 m Grids (5) | 500 m Grids ())
Tainan, Taiwan 4,624 | 525,364 330,127 469,971 3,768
Hsinchu, Taiwan 3328 | 482,749 263,473 10415 416
Keelung, Taiwan 2,775 | 293,278 283,374 13,276 531
Cheongju, South Korea 2,107 | 142,365 200,256 94,043 3,761
Melaka, Malaysia 1,231 | 85742 150,345 164,300 6,572
Chiang Mai, Thailand 956 | 68,590 310,789 4,020 161
Okinawa, Japan 1,650 | 97,834 220,501 488,108 9,124
New York, USA 14,855 | 850,123 400,678 77,431 3,135
London, UK 13,597 | 789,456 379,234 116,936 4,420
Tokyo, Japan 16,250 | 812,367 419,890 469,524 8,776

fluctuate with the graph’s partitioning quality, leading to potential
inaccuracies if it doesn’t precisely reflect the graph’s structure.
Additionally, the initial clustering can be resource-intensive, posing
challenges for large, complex graphs. Dynamic graphs requiring
frequent cluster updates introduce further computational demands,
potentially hindering the efficacy in real-time applications due to
these evolving structures. The issues with graph clustering quality
and adapting to dynamic graphs highlight the need for ongoing
innovation for full GNN potential in analyzing complex systems.

3 Method

Datasets. Three types of input data are mapped into grids accord-
ing to their coordinates, including (1) Points of Interest (POIs) S
from point-shaped urban amenities, (2) bus stations, and (3) cen-
troid point locations calculated from the polygon-shaped data of
plant species and green attractions. The dataset in Tainan, Hsinchu,
Keelung, Cheongju, Melaka, Chiang Mai, Okinawa, New York, Lon-
don, and Tokyo include a total of 57 categories across 10 cities with
bus stops, POIs of urban amenities, and centroid points of
plant species and green attractions, see the details in Table 1.
These point data will all be referred to as POIs S in the follow-
ing sections, while they were mapped into grids Gxxy in 100 m
square for small scale s unit, and grids in 500 m square for large
scale [ unit. To determine the number of grids, divide the total

area by the area of one grid using the formula: Number of Grids =
Total Area in square meters
Area of one grid in square meters

to relies heavily on high-quality, geo-spatially detailed datasets,
which may not be universally available, the sparse POI data sam-
pled from the sources include Google Map API, OpenStreetMap AP]I,
iNaturalist, web crawlers, and open data from local gvernments
[1-3, 18]. These POIs S cover a broad range of categories such as
dining venues, shopping places, public facilities, educational institu-
tions, medical facilities, undesirable amenities, financial institutions,
churches, and more. This data type contains a variety of common
POIs in urban areas, sufficient to represent the heterogeneity be-
tween different areas.

Architecture. Each module in the architecture is grounded in
real urban mobility challenges. For example, the grid mapping sim-
plifies handling irregular city layouts; multi-scale clustering reflects
the actual variety of green spaces; attention prioritizes context-
relevant features; and Q-learning captures diverse preferences over
time. See model training details in Appendix A.

The advancement of urban travel through the detailed recom-
mendation of green attractions is predicated on the integration of
sophisticated geospatial analysis with user-centric data interpreta-
tion. Our system utilizes a Cluster Graph Convolutional Network

To reduce data dependency, avoiding
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(Cluster-GCN) enhanced with multi-scale clustering and an atten-
tion mechanism to achieve this integration (Figure 1 and Table 2):

(1) POI Data and Grid Mapping: Urban Points of Interest
(POIs), especially green attractions, are unevenly distributed and
vary widely in form—from neighborhood parklets to large botani-
cal gardens. To model this diversity efficiently, we discretize the
city into spatial grids, which not only support geospatial reason-
ing but also enable uniform computation across variable urban
landscapes. This approach makes it scalable to cities with com-
plex and inconsistent road or POI layouts, especially in regions
lacking subway systems. The decision to structure POI data into
a grid format corresponds with the need for a scalable approach
to data management that can accommodate the vast and varied
nature of urban environments. This method enhances the system’s
ability to process and analyze data efficiently, ensuring that green
attractions are accurately represented within the urban matrix. (2)
Multi-Scale Clustering in Cluster-GCN: To reflect the hetero-
geneity of urban green spaces, we employ multi-scale clustering
within a Cluster-GCN framework. This allows the system to dis-
tinguish between localized pocket parks and larger green zones,
which users may access differently depending on their location,
travel intent, and time constraints. The clustering model supports
context-aware grouping of POlIs, allowing for recommendations
that match user preferences at the appropriate attraction granu-
larity level. Multi-scale clustering allows the system to recognize
and categorize these attractions at different scales, improving the
granularity of the analysis and ensuring more precise recommenda-
tions. This approach not only enhances pattern recognition but also
adapts to the diverse preferences of urban travelers. (3) Attention
Mechanism: Not all features in a city graph are equally relevant
to a user’s intent. The attention mechanism highlights key spatial
features—such as connectivity, environmental quality, or proxim-
ity to transit hubs—based on user queries or inferred interests. This
selective focus not only improves clustering interpretability but
also enables a personalized recommendation experience that adapts
dynamically to user context. Incorporating an attention mechanism
enables the system to focus on the most relevant features of the
green attractions based on user queries. This focus is crucial for
personalizing recommendations, which in turn, enhances user sat-
isfaction and engagement with the recommended green spaces.
By prioritizing significant features, the system tailors its outputs
to the specific needs and interests of its users, promoting a more
targeted exploration of urban greenery. (4) Evaluation Metrics:
To ensure clustering is not only computationally valid but also
spatially and semantically meaningful, we evaluate using Sil-
houette Score [22], Davies-Bouldin Index [8], and Adjusted Rand
Index [14]. These metrics quantify how well POIs are grouped and
whether clusters align with human-perceivable green zone patterns.
High scores directly translate to higher quality of recommenda-
tion for different spatial scales. The use of sophisticated metrics
enables rigorous evaluation of the clustering quality. These metrics
are crucial for optimizing the system’s performance and ensuring
that the recommendations are both accurate and meaningful, thus
directly contributing to enhanced urban travel experiences. (5) Du-
eling DDOQN and Recommendation: Recommendation actions
are guided by a Dueling Double Deep Q-Network (Dueling DDQN),
which treats each green attraction suggestion as an action in a

Lai et al.

Table 2: Attention based Cluster-GCN for plant species and
bus station mapping with Dueling DDON in multi-scale.

Algorithm 1

Step Description

Input: S: POIs; Gxxy: grid; K: clusters.
Output: R: recommendations.

1 Input S, Gxxy, K

2 GridMap < Map S to Gxxy

3 SG « Convert GridMap to graph

4 {V,E} « ENCODE(SG)

5 G — GRAPH(L)

6 C « ClusterGCN (G, K)

7 Init F, Fy

8 For each scale scale € {I,s}:

9 Cscale < ClusterGCN ({V, E}, scale)

10 For ¢; € Cyegle:

11 F., — AGG(c;)

12 FscateV = {Fe;}

13 End For

14 Fscate <= ATT (Fscqle, scale)

15 End For

16 Fe—FoF

17 Metrics @ < EVAL(F, {SS, DBI, ARI})

18 Init Dueling DDQN with parameters 0y, 64
19 Define reward function:

20 R(s,a) = ApP(s,a) + AsS(s, a) + ,U (s, a)
21 For each state s € F:

22 Q(s,a;0,a, p)

23 = V(5:0v) + (A 604) — (3757 Saren(s) Al a'504)
24 Derive policy 7(s) = softmax (w)
25 Update parameters 0 « 0 + nVgE[R(s, a)]
26 End For

27 R « RECOMMEND(F) based on 7(s)

spatial decision space. Through interactions (e.g., clicks, rejections),
the system effectively learned preferences from feedback. The
dueling architecture efficiently separates the value of a state (e.g.,
user near a dense green cluster) from the advantage of each action
(e.g., recommending a nearby eco-park), allowing more robust adap-
tation across users and city layouts. The RL model of the system
learns from user interactions, such as which recommendations are
accepted or ignored, and adjusts future recommendations accord-
ingly. This feedback loop continuously refines the recommendation
engine, improving user satisfaction and system efficiency over time.
These technical choices are driven by the need to effectively
parse and prioritize urban green spaces, which are essential for im-
proving the quality of urban life and promoting sustainable tourism
practices. Our system’s design is tailored to enhance the explo-
ration and enjoyment of urban green spaces. By leveraging detailed
graph analysis, spatial searches, and personalized recommendation,
which supported by machine and deep learning, it seeks to trans-
form urban travel into a more engaging and sustainable activity.

3.1 POI Data and Grid Mapping

Mapping POIs S to Grids Gyxx . The mapping of POIs (S) onto the
grid Gxxy involves several steps: (1)Intersection: For each polygon
p, represented as an element in the set of polygons P, assign p to
a grid cell g within the grid G if the centroid C(p) of polygon
p lies within grid cell g. (2)Filtering: Retain each polygon p in P
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unless it is verifiably irrelevant or its data is incomplete. Specifically,
remove a polygon if: The area A(p) = 0 and it lacks other defining
attributes (e.g., historical significance or designated use). (3)Area
Calculation: Compute the area A(p) for each polygon p in P.
(4)Centroid Conversion: Convert the geometric center of each
polygon p into a centroid point C(p). (5)Area Calculation for
Points: For each grid cell g in G, calculate the total area contributed
by points within the grid cell as 3 ,¢; A(p) - N(g), where N(g) is
the number of points within grid cell g. (6)Total Area Calculation:
Calculate the total area for each grid cell g as 3’ ¢ A(p). (7)Area-
Weighted Count: Compute the area-weighted count for each grid
2peg A(p)-N(g)

2peg Alp)
represent the grid into which the urban space is divided, with Gxxy
indicating specific grid cells. S denote the set of POIs S centroids.
A(p) denote the area of polygon p. C(p) denote the centroid point
of polygon p. N(g) denote the number of points within grid cell g.

Graph Encoding.The grid map is converted into a graph format
SG, encoding spatial relationships. We construct graph with ver-
tices V represent the various POIs S, including bus stations, green
attractions and plant centroids, and other urban amenities. Edges
E between nodes are established based on spatial proximity and
categorical relevance, emphasizing connections that are likely to
influence urban mobility and green space accessibility. The graph,
represented by V and E, processes clustering preparation. Each ver-
tex V incorporates location coordination, counting points in each
grid, and the spatial attributes. The Haversine formula calculates
distances d between two POIs S to establish edges E:

d = 2r arcsin (\/sin2 (%) + cos(¢y) cos(¢y) sin? (ATA))

d is the distance between two points on a sphere’s surface, r is
the sphere’s radius (Earth’s mean radius is about 6371 km), ¢ and
¢2 are the points’ latitudes in radians, A¢ = ¢2 — @1 is the latitude
difference, and AA is the longitude difference in radians.

Data Augmentation. The system processes the encoding data
into a graph that captures spatial features related to bus trans-
portation and plant landscapes in urban spaces. Depending on data
characteristics, distinct scale modules in clustering are applied. To
enhance the model’s performance and robustness: (1) Sampling
and Area Selection: Used as split criteria to ensure diverse and
comprehensive training samples. (2) Oversampling and Under-
sampling are applied to address imbalance dataset, ensuring that
less frequent but significant categories such as specific types of
green attractions or bus stations are appropriately represented.

cell g as . P represent the set of all polygons. G

3.2 Cluster-GCN with Multi-Scale Clustering

Our method (Figure 1) enhances higher intra-cluster similarity
by grouping vertices into clusters, ideal for revealing hidden pat-
terns in graph convolutional networks. The integration of attention
mechanisms further refines clustering quality by weighting edges,
capturing nuanced graph structures for improved performance.
Feature Initialization. Features at large (F;) and small (F;)
scales are initialized to capture various levels of spatial information
with: Fj, Fs < InitializeFeature(G, scale) indicating the process
of initializing features for G at different scales. The Cluster-GCN
algorithm is applied to the graph G, segmenting it into smaller
sections based on similarity, with the designated number of clusters
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K,where G is the input graph and C; represents each cluster formed
within the graph: G « ClusterGCN (G, K) = {C1,Cs,...,Ck}.

Cluster-GCN Model Design. Given a graph G = (V, E) where
V and E represent vertices and edges, Cluster-GCN partitions G
into K clusters for efficient processing. Let S = {S1,S2,...,5k}
denote the set of clusters. Cx represents the clusters generated by
the Cluster-GCN algorithm for efficient graph processing, while
Sk may denote an initial or specialized subset of clusters used
for validation, testing, or other specific analytical purposes. The
adjacency matrix A and feature matrix X of graph G are input into
the model. The goal is to learn a function f(-) that maps node
features X to labels Y with the graph structure for regularization:
HE) = 6D~ 7AD" HOW D) where A = A + Iy (with Iy
being the identity matrix), D is the diagonal node degree matrix of
A, H® is the activation in the [-th layer (with HO) = X), w is
the weight matrix for the [-th layer, and o(-) represents the non-
linear activation function.

Hyperparameters and Loss Design. Hyperparameters include
the number of clusters K, learning rate 5, and the dimensions
of each hidden layer. The loss function is designed to minimize
the difference between the predicted labels ¥ and the true labels
Y, often using Cross-Entropy Loss for classification tasks: £ =
- Z{il Z}C\/il Yic log(f/ic),where N is the number of nodes, M is
the number of classes, Yj is the ground truth, and f/ic is the pre-
dicted probability of node i belonging to class c. For mapping
POIs S, introduce a spatial attention layer, where A’ is the ad-
justed adjacency matrix focusing on more relevant spatial con-
nections, and Wy;; is the weight matrix of attention mechanism:
A’ = softmax(LeakyReLU (A + Wgt¢)). To accommodate the clus-
tering of POIs S, the model could incorporate the multi-modal
inputs: Ffusion = U(qusion . [Fspatial;Fcate]) ,where Fspatial
and Feqse represent the features related to spatial and categorical
data, respectively, and W0, is the weight matrix for the fusion
layer. The tailored Cluster-GCN architecture becomes more suited
for tasks requiring nuanced understanding of spatial and categorical
data within urban environments.

Multi-Scale Clustering. For each scale, large (I) and small (s),
the graph undergoes a distinct clustering process, with features Fe,
aggregated for each cluster ¢; within that scale: V scale € {I, s},
Cscale < ClusterGCN (G, scale). Here, Cy. 4, represents the set
of clusters obtained for each scale, and F;; symbolizes the aggre-
gated features for cluster ¢;: V¢; € Cyeqres  Fe; < AGG(c;). Given
a set of features F, for each cluster c;, we update the feature set
Fscate bY: FscqieYU = {Fe, }. This denotes the aggregation of features
from individual clusters into the comprehensive set Fs.gje-

3.3 Attention Mechanism

Attention Mechanism Model Design. Incorporating an attention
mechanism within the Cluster-GCN framework refines structural
details for tasks through specific edge emphasis. The formulations
include attention coefficients, feature aggregation, hyperparame-
ters, and loss function design. Given a set of node features F, for
each cluster c;, it calculates attention coefficients for the edges,
highlighting the importance of node features as follows: (1) At-
tention Coefficients: The coefficients between nodes i and j:
a;j = LeakyReLU (aT[W fill W fj]) , where W represents a weight
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matrix applied to the node features f; and f;, a’ is the transpose
of the weight vector for the attention mechanism, and || indicates
concatenation. (2) Normalization: The coefficients are normalized
using the softmax function to facilitate comparison across nodes:
i = Ze"#
keN (i) exp(aik)

Loss Design for Clustering. The design of the loss function
in clustering with an attention mechanism aims to enhance intra-
cluster similarity while reducing inter-cluster similarity. This is
achieved by integrating a clustering-specific loss component and a
regularization term for attention weights. Using the ClusterGCN (G,
we evaluate the clustering effectiveness with established metrics «,
including Silhouette Score (SS), Davies-Bouldin Index (DBI), and Ad-
justed Rand Index (ARI). The loss function combines these elements
to effectively capture and emphasize the structural patterns crucial
for high-quality clustering: (1) Clustering Loss: Focused on clus-
tering quality by maximizing intra-cluster similarity and minimiz-
ing inter-cluster differences: L¢jyster = ClusteringQualityMetric(C),
drawing from metrics such as SS, DBI, and ARI in a gradient-
optimizable form. (2) Attention Regularization: Aims to distrib-
ute attention discriminatively across the graph based on the entropy
of attention weights: Lyeg = — Zﬁl 2jeN(i) %ijlog(aij). (3) Com-
bined Loss Function: Integrates clustering and attention regular-
ization: L = Lejygster + ALreg, Where A balances the two components.
This loss design ensures that the Attention-Cluster-GCN model
effectively learns to identify and emphasize the graph’s structural
patterns most relevant for high-quality clustering.

N (i) means the neighbors of node i.

3.4 Feature Aggregation

After calculating attention coefficients, they weight the aggregation
of neighboring node features, enhancing the distinction and captur-
ing the nuanced structural information necessary for differentiating
clusters: f/ = o (ZjeN(i) aiijj) , The combination of large (F})
and small (Fs) scale features forms a comprehensive spatial rep-
resentation: F = F; @ Fs, which is instrumental for clustering by
integrating diverse scales of spatial information, facilitating a more
accurate and meaningful distinguishing of the graph clustering
purposes.

3.5 Dueling DDON and Recommendation

From Clustering to Recommendations. The process of clus-
tering and its role in generating recommendations for visitation
locations are intrinsically connected. The clustering algorithm or-
ganizes and groups POIs based on their features which are refined
through the attention mechanism described earlier. This clustering
is not just a grouping by proximity or type, but a sophisticated
categorization based on a composite of spatial and semantic simi-
larities, ensuring that each cluster represents a coherent subset of
attractions that are contextually related.

Dueling DDQN Architecture. Dueling DDQN (Figure 1 and
Table 2) offer a refined approach for addressing the complexities
involved in recommendation systems, particularly when working
with graph-based data structures while considering multi-purpose
and multi-stakeholder. This section details the mathematical un-
derpinnings of Dueling DDQN’s integration into recommendation
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systems, highlighting its role in enhancing policy exploration, com-
pensating for limitations in attention-based feature aggregation,
and balancing key recommendation metrics.

The Dueling DDON separates the estimation of the state-value
function and the advantage for each action, which is particularly
beneficial in the context of a graph where the state space and action
space are large and complex:

1
s,a;0,a,B) =V(s;0p)+H A(s,a;04) - —— A(s,a’;04) |,
Q( B) =V (s 004 Als.a504) = T aé@ (s,a";6a)

where:

o V(s;0y) estimates the value of being in state s,

e A(s,a;04) computes the advantage of action a over other
actions in state s,

o Oy and 04 are parameters specific to the value and advantage
streams, respectively,

e A(s) represents the action set available in state s.

Compensating Feature Aggregation with Differentiable
Policy Exploration. Feature aggregation in graph-based data
structures may miss capturing weaker yet critical signals due to the
dominance of more salient features. Dueling DDQN mitigates this

by employing a differentiable policy that encourages exploration

Q(.a:0.0.8)
T

of underappreciated features: 7 (s) = softmax ( ) where

the recommendation policy 7(s) as a differentiable function of the
Q-values, allowing gradient-based optimization to directly tune
which actions to explore; 7 is a temperature parameter that controls
the level of exploration, encouraging the system to investigate less
obvious paths that might yield novel recommendations.

Reward Function for Precision, Serendipity, and Engage-
ment. The reward function R(s, a) is designed to incorporate dif-
ferent aspects of the recommendation quality, specifically aiming
to balance precision, serendipity, and user engagement. The func-
tion is defined as: R(s, a) = ApP(s, a) + AsS(s, a) + A, U (s, @), where
P(s,a), S(s,a), and U(s, a) measure the precision, serendipity, and
user engagement in Hit Rate of action a in state s, respectively. A,
As, Ay are weighting factors that prioritize these aspects according
to system goals.

Serendipity is defined as the measure of how surprising the
recommendations are to the user, relative to the user’s typical in-
teraction or historical preferences, yet still being relevant and ap-
preciated. Let H,, represent the historical set of items interacted
with by user u, and let R represent the set of recommended items.
Serendipity S(s, a) can then be quantified as:

[{r e R| r ¢ Hy Arisrelevant}|
S(s,a) = R] :

where:

e r € R are the items recommended in the current session,

e r ¢ H,, ensures that the recommended items are not part of
the user’s historical interactions,

e r is relevant confirms that the items are still relevant to the
user’s preferences.

Optimization from User Feedback for Improvement. The

Dueling DDQN framework is optimized using a gradient-based
approach, updating parameters to maximize expected rewards while



M3

maintaining a balance among the competing objectives:
0"¢v = 0°l4 & pV,E[R(s, )],

where 7 is the learning rate. This optimization ensures that the
recommendation system dynamically adapts to user feedback and
evolving data patterns, enhancing overall recommendation quality
across precision, serendipity, and engagement. By incorporating
Dueling DDQN into graph-based recommendation systems, the
approach effectively addresses the challenges of large and complex
action spaces typical of such environments. The use of a differen-
tiable exploration strategy within this framework ensures that all
potential actions are thoroughly evaluated, allowing the system to
discover and leverage intricate patterns within the data for more
effective and engaging recommendations This feedback mechanism
ensures that the model continuously adapts to new data, improv-
ing accuracy and relevancy across different urban environments.
This comprehensive and mathematically rigorous approach ensures
the recommendation system is robust and adaptable, capable of
handling the complexities of various urban settings internationally.

Implementation of Recommendations. After the success-
ful aggregation of features and the formation of clusters, the sys-
tem utilizes these clusters to inform its recommendations: R =
{r1,r2,...,rn} where each r; is derived from cluster Cg. Each rec-
ommendation r; is generated based on the characteristics of a cluster
Ck. The selection of POIs from these clusters for recommendations
is based on several criteria: (1) User Preferences: Recommenda-
tions are tailored to match the specific preferences and historical
interactions of the user. If a user shows a preference for certain
types of green spaces or cultural sites, the recommendation en-
gine prioritizes POIs from clusters enriched with these features.
(2) Contextual Relevance: The current context of the user, in-
cluding spatial areas and current location within the city, affects
which clusters are tapped for recommendations. (3) Diversity and
Novelty: To enhance user experience, the system also considers
diversity and novelty in its recommendations, ensuring that sugges-
tions from clusters provide a range of experiences, even suggesting
lesser-known POIs that still fit the user’s overall preferences. The
final recommendation result R for bus stops and their nearby green
attractions are stored in a database through a structured and auto-
mated spatial graph data pipeline, enhancing the precision of our
urban mobility and green attraction recommendations. Then, R are
presented to the user through an interactive interface, which not
only displays the suggested POIs but also provides detailed infor-
mation about why these locations were recommended, based on
the cluster attributes. This transparency helps in building trust and
enhancing the user engagement with the system. Additionally, the
interface allows users to provide immediate feedback on the recom-
mendations, which the system uses to refine further clustering and
recommendation processes, and leveraging insights derived from
the spatial data analysis to inform decision-making or suggestions.

Personalization Mechanism. To ensure truly personalized
recommendations, our system models each user with: (1) User
Embedding: Each user’s historical interactions (clicks or accepted
recommendations) are aggregated into a fixed-dimensional vector,
which serves as the initial state for the Dueling DDQN. The user
embedding is updated incrementally after every interaction. (2)
Online Preference Update: After each interaction (click, skip, or
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bookmark), we perform a small-batch incremental learning step to
adjust the user embedding, allowing the policy to quickly adapt to
changing behaviors. We employ a lightweight online fine-tuning
(incremental gradient) mechanism to learn from user actions in
real time. (3) Personalization vs. Generalization: To compare
personalization against a purely generalized model based on global
statistics, we introduce user-specific vectors. In our experiments,
we evaluate Personalized versus Global Dueling DDON, quantifying
the difference between using user embeddings and relying solely
on map-level statistics. See details in Appendix B.1, B.2, B.3,
Figure 5 Figure 6.

Temporal Dynamics. Urban traffic exhibits strong collective
patterns and clear periodicity—daily rush hours, weekday/weekend
differences, even seasonal shifts. To capture this, we enrich our
spatial graph with temporal embeddings (e.g. time-of-day, day-of-
week, month-of-year) at each node. During offline clustering, we
group POIs not only by location but also by similar traffic-time
profiles, yielding spatiotemporal clusters that reflect, for example,
morning-commuter green spaces vs. weekend-leisure parks.

Continuous Adaptation. To handle ever-changing traffic, we
adopt a sliding-window update strategy: every 6 hours (config-
urable), we incrementally update node features and edge weights
based on the latest transit data—avoiding full retraining. The at-
tention mechanism is fine-tuned online via lightweight incremen-
tal gradient steps, and Cluster-GCN parameters are synchronized
within minutes. The Dueling DDQN periodically retrains on recent
interaction logs in past 24 hrs so that recommendation policies
adapt to current user flow without catastrophic forgetting.

Generalizability.To validate the generalizability of the pro-
posed recommendation system beyond initial test sites in Taiwan,
a methodical approach is employed to generate representative and
synthetic user samples from diverse international urban contexts,
including Cheongju, Melaka, Chiang Mai, and Okinawa, where
are also the cities without subway system (Table 6). This includes
collecting and simulating data on urban structure, public transport
systems, and population density to reflect the unique characteristics
of each city. Adjustments are made to model parameters to fit local
contexts, emphasizing cultural and environmental factors relevant
to each location: (1) Statistical Extrapolation and Parameter
Adjustment: Given a city C with urban parameters Uc, the baseline
model M is adapted: Mc = f(M, Uc), where f is the transformation
function that adjusts M to fit Uc, optimizing for local transportation
modalities and urban mobility patterns. (2) Synthetic Data Gen-
eration: Using M, synthetic user interactions I are generated to
simulate decision processes within C: s; ~ p(Uc), i=12,...,N,
where p(Uc) is the probability distribution of user choices derived
from Uc, and N is the number of synthetic samples. See details in
Appendix B.4, B.5, Figure 6(d).

4 Experiments

4.1 Baseline and Performance Comparison

Clustering Metrics. To comprehensively assess the effectiveness
of the clustering, we employ a suite of established metrics &, each
highlighting different facets of clustering quality: (1) Silhouette
Score (SS): Measures the cohesion and separation of clusters. A
higher SS indicates that clusters are dense and well-separated,
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Table 3: Baseline and ours performance comparison in clustering and recommendation.
a SS DBI ARI Precision Recall F1-Score

Batch size 16 32 64 16 32 64 16 32 64 16 32 64 | 16 32 64 | 16 32 64
GMM [21] 03968 03759 03771 | 03492 03511 03487 | 0.3256 0.3247 0.3269 | 043 042 043 | 040 039 040 | 041 0.40 041
FastGCN [4] 04612 0.4607 04628 | 0.2487 0.2479 0.2495 | 0.3917 0.3928 0.3905 | 0.50 049 050 | 0.48 047 048 | 049 0.48 049
GraphSAGE [12] | 04665 04674 04659 | 0.2396 0.2381 0.2403 | 0.3961 0.3972 0.3954 | 0.52 051 052 | 050 049 050 | 051 050 0.51
GraphSAINT [28] | 0.4713 04722 04704 | 0.2349 0.2357 0.2338 | 0.4015 0.4023 04006 | 0.53 052 053 [ 051 050 051 | 052 051 0.52
VR-GCN [5] 04819 0.4828 0.4807 | 0.2598 0.2604 0.2586 | 0.3873 0.3864 0.3885 | 0.55 0.54 055 | 0.53 052 053 | 0.54 053 054
GATT [23] 04417 0.4403 0.4425 | 0.2649 0.2655 0.2637 | 03672 0.3661 0.3683 | 049 048 049 | 047 046 047 | 048 047 048
GaAN [29] 04868 0.4893 0.4869 | 0.2543 0.2559 0.2531 | 03725 03737 0.3714 | 0.56 055 056 | 0.54 053 054 | 0.55 054 055
Cluster-GCN [7] | 0.4968 0.4954 04876 | 0.2231 0.2285 0.2740 | 04034 0.4053 03845 | 0.57 056 057 | 0.55 054 055 | 0.56 055 0.56
DDSGNN [27] | 04972  0.4903 04903 | 0.2195 02277 0.2484 | 0.4177 03983 04215 | 058 0.57 058 | 0.58 055 055 | 0.57 056 0.57
TSP-GNN [10] | 0.4986 04975 04914 | 0.2178 0.2293 0.2577 | 0.4083 0.4039 0.4092 | 0.59 0.58 0.59 | 0.57 056 0.57 | 0.58 057 0.58
GCRL [17] 05132 0.5013 0.4972 | 0.2084 0.2138 0.2120 | 0.4014 04075 04147 | 0.69 0.64 0.65 | 0.62 0.58 0.56 | 0.66 0.69 0.60
Ours 0.5267 04971 0.5113 | 0.1992 0.2063 0.2304 | 0.4281 0.4269 0.4274 | 0.75 0.67 0.68 | 0.65 0.60 0.61 | 0.70 0.63 0.66

which is desirable for high-quality clustering: SS = %’ Table 4: Clustering metrics with diverse sampling methods.

where a(i) is the average distance from the i-th data point to other
points in the same cluster, and b(i) is the smallest average distance
from the i-th data point to points in a different cluster, minimized
over clusters. (2) Davies-Bouldin Index (DBI): Compares the
within-cluster similarity to the between-cluster differences. Lower

values indicate better clustering: DBI = I% ZlK: | MaX ( d‘(f’::j ) )

where oj is the average distance of all points in cluster i to the cen-
troid ¢;, and d(c;, ¢j) is the distance between centroids ¢; and c;. (3)
Adjusted Rand Index (ARI): Measures the similarity between two
clusterings, accounting for chance groupings. ARI values near 1 indi-

i ) =[2 (9 2 )]

cate perfect agreement: ARI =

where n;; is the number of points in common between cluster i in
the first clustering and cluster j in the second clustering, g; is the
total points in cluster i of the first clustering, and b; is the total
points in cluster j of the second clustering.

Baselines and Ours Performance . Our model excels in SS,
DBI, ARI in clustering and Precision, Recall, F1-Score in recommen-
dation for batch sizes of 16, 32, and 64, surpassing most baselines
across all metrics (Table 3). For benchmarking, state-of-the-art
methods in baseline models of GCN techniques like FastGCN [4],
GraphSAGE [12], and GraphSAINT [28] demonstrate superior per-
formance with higher SS and ARI, and lower DBI, while these
baselines designed for scalable and efficient graph clustering, pro-
vide high-quality results with optimized clustering performance.
Particularly, Cluster-GCN [7] and enhances efficiency and scalabil-
ity, while GCRL [17] achieves higher SS up to 0.5013 for batch size
of 32, and higher DBI in 0.2120 for 64 batch size. Our model modifies
Cluster-GCN by integrating attention mechanisms with Dueling
DDQN, enabling more precise structure capture and pattern detec-
tion, leading to the highest SS of 0.5267, the lowest DBI of 0.1992,
and the highest ARI of 0.4281 at batch size 16, thus our model
with the optimal cluster separation and accuracy in robustness;
Our model consistently outperforms all baselines in recommen-
dation effectiveness—achieving a peak Precision of 0.75, a Recall
of 0.65, and an F1-Score of 0.70 at batch size 16—demonstrating
substantially improved accuracy and balance between precision
and coverage (Table 3).These improvements position our model as

Yz (s O -z (D 2 G

Sampling Method ( with batch size = 16, Tainan) SS DBI ARI
Ours (Multi-Scale Sampling) 0.5267 | 0.1992 | 0.4269
Sampling by Ring Network 0.4201 | 0.9526 | 0.3866
Sampling by Village Areas 0.3621 | 1.2126 | 0.3761
Sampling by Axial Lines 0.3921 | 1.1126 | 0.3961
Random Sampling 0.3147 | 1.6929 | 0.3346

Table 5: Clustering performance of five ablation study.

a ( with batch size = 16 ) SS DBI ARI
Ours 0.5267 | 0.1992 | 0.4269
Ours w/o Dueling DDQN | 0.3310 | 2.2618 | 0.3116
Ours w/o ATT 0.2421 | 0.4826 | 0.3636
Ours w/o Multi-Scale (F) | 0.2009 | 3.1126 | 0.3661
Ours w/o Large Scale (F) | 0.2147 | 2.6929 | 0.3846
Ours w/o Small Scale (Fs) | 0.2214 | 3.1135 | 0.3812

the optimal method for analyzing complex graph data, effectively
utilizing underlying patterns, and outperforming the baselines.
Sampling for Clustering. In Table 4, we evaluate the impact
of using different sampling methods on our model’s performance.
The experiments show the importance of our chosen approach,
evidenced by significant differences in SS, DBI and ARI with other
methods. Each method influences the model differently: (1) Ring
Network: This method defines the inner ring as training data, the
middle ring as validation, and the outer ring as testing, resulting in
alower SS = 0.4201, higher DBI = 0.9526, and a reduced ARI = 0.3866.
(2) Village Areas: This method focuses on sampling from distinct
village areas to represent rural settings in training, validation, and
testing. It results in SS = 0.3621, DBI = 1.2126, and ARI = 0.3761.
This method captures the heterogeneity within rural settings but
still shows a decrease in clustering performance compared to our
approach. (3) Axial Lines: This method, which involves splitting
data along axial lines (6:2:2 ratio for training, validation, and test
splitting), means that each axis will include city, suburb, and rural
areas. The results in a performance decrease: SS drops to 0.3921,
DBI rises to 1.1126, and ARI to 0.3961, indicating its less severe
but still impactful differences. (4)) Random Sampling: Randomly
assigning data to Train, Val, and Test sets leads to the notable
performance degradation: SS decreases to 0.3147, DBI increases to
1.6929, and ARI to 0.3346, showing that our method outperforms
random sampling by capturing more relevant spatial features.
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Table 6: Comparison across 10 cities without subway system (spatial heterogeneity in city functionalities and cross-countries)

City Cluster Metrics Recommendation Effectiveness User Indexes of Recommendations

SS DBI ARI | Precision | Recall | F1-Score | Sample Size | Hit Rate (%) | Satisfaction (%) | Serendipity (%)
Tainan, Taiwan (a historical city) | 0.5267 | 0.1992 | 0.4281 0.75 0.65 0.70 100 82 80 48
Hsinchu, Taiwan (a high-tech city) | 0.5241 | 0.2054 | 0.4197 0.72 0.68 0.67 100 78 75 46
Keelung, Taiwan (a harbor city) 0.5203 | 0.2031 | 0.4233 0.70 0.62 0.66 100 80 77 38
Cheongju, South Korea 0.5150 | 0.2132 | 0.4177 0.68 0.57 0.62 100 74 72 28
Melaka, Malaysia 0.5113 | 0.2157 | 0.4043 0.65 0.58 0.61 100 75 73 45
Chiang Mai, Thailand 0.5182 | 0.2085 | 0.4154 0.69 0.60 0.64 100 76 74 42
Okinawa, Japan 0.5123 | 0.2127 | 0.4055 0.67 0.59 0.63 100 77 76 36
New York, USA 0.5050 | 0.2201 | 0.4102 0.66 0.60 0.63 100 70 68 30
London, UK 0.5082 | 0.2175 | 0.4125 0.67 0.61 0.64 100 72 70 32
Tokyo, Japan 0.5105 | 0.2123 | 0.4148 0.68 0.62 0.65 100 74 73 35

Validated across Various Cities. Due to our method outper-
forming previous models, this table furthur indicates how our
method performs in different urban contexts, providing a more com-
prehensive assessment of its efficacy and applicability. For cities
with more primitive forms of transportation, the proposed method
is extended here to include results from different city functionalities
and across countries to better verify its generalizability and per-
formance across different urban settings; for more advanced cities
(NYC, London, and Tokyo), which are larger, have more complex
forms and structures of transportation, large populations, and need
to consider the relationship with the surrounding urban network,
the model still maintain the same level performance. Table 6 shows
the clustering metrics across these cities with recommendation
effectiveness (Precision, Recall, and F1-Score), and user indexes of
recommendations (Sample Size, Hit Rate (%), and Satisfaction (%)).

4.2 Ablation Study

In Table 5, we evaluate the impact of omitting specific features on
our model’s clustering performance. The results demonstrate the
importance of each component. The full model achieves the highest
SS =0.5267, lowest DBI = 0.1992, and highest ARI = 0.4269. Remov-
ing the Dueling DDQN leads to a significant performance drop (SS
=0.3310, DBI = 2.2618, ARI = 0.3116), highlighting its crucial role in
balancing policy exploration and feature aggregation. Excluding the
attention mechanism (w/o ATT) drastically decreases effectiveness,
as seen with SS = 0.2421, the second high DBI = 0.4826, and ARI =
0.3636, emphasizing its role in refining spatial-semantic relation-
ships. The absence of multi-scale features (w/o F) further degrades
performance (SS = 0.2009, DBI = 3.1126, ARI = 0.3661), showing
their importance in capturing spatial heterogeneity. Comparatively,
removing small-scale features (w/o Fs) has a slightly more negative
impact (SS = 0.2214, DBI = 3.1135, ARI = 0.3812) than excluding
large-scale features (w/o Fj, SS = 0.2147, DBI = 2.6929, ARI = 0.3846).
This indicates the small-scale features’ critical role in capturing
fine-grained spatial details, while large-scale features contribute
to broader contextual understanding. These results validate the
necessity of each component in achieving clustering performance.

4.3 Sensitivity Analysis

The sensitivity analysis reveals notable differences in the perfor-
mance metrics across scales and parameter settings, as depicted in
Figure 2. (1) For the Learning Rate (), the results indicate that
the Small Scale (100m) achieves optimal performance at 10~%, while
the Large Scale (500m) exhibits lower sensitivity, with more stable

Sensitivity Analysis Across Parameters, Metrics, and Scales
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Figure 2: Sensitivity analysis: parameters, metrics, and scales.

trends across the parameter range. (2) For the Maximum Cluster
Number (K), the Small Scale (100m) demonstrates heightened sen-
sitivity, reaching peak performance at K = 12. Conversely, the Large
Scale (500m) displays relatively stable performance throughout the
range. (3) The Trade-off Parameter (f) shows a consistent im-
provement in performance for the Large Scale (500m) as f increases,
peaking in the range of 12 to 14. (4) For the Discount Rate (y), the
Small Scale (100m) experiences a pronounced improvement, peaking
at approximately 1.3 X 1072, The Large Scale (500m) also improves
with y, but the trend is more gradual and exhibits less variability.
These results highlight the importance of scale-specific tuning for
achieving optimal performance. The Small Scale (100m) consistently
demonstrates greater sensitivity across all parameters, emphasizing
the need for fine-grained adjustments in high-resolution scenarios.
In contrast, the Large Scale (500m) benefits from broader parameter
ranges and exhibits more robust performance.
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Figure 4: One of the visualized results illustrates the multi-
purpose and multi-stakeholder characteristics of tourist and
resident activity areas alongside bus routes, highlighting
clustering results optimized through attention-based RL.

4.4 Multi-Purpose/Stakeholder: User Groups

Our method effectively captures the multi-scale spatial heterogene-
ity inherent in bus network, providing a deeper understanding
of how factors such as the geographic separation of residential
and tourist areas impact transit demand and usage patterns. The
integration of Dueling DDQN with graph clustering enables differ-
entiated and customized recommendations tailored to the needs
of both residents and tourists. For instance, tourists benefit from
recommendations prioritizing access to green attractions and ef-
ficient sightseeing routes, while residents gain enhanced transit
options for daily commuting, focusing on accessibility and reduced
congestion. Additionally, attention-based RL refines clustering per-
formance by improving the separation and identification of routes
based on passenger behavior, ensuring that routes are optimized for
both efficiency and specific user groups with the multi-purpose and
multi-stakeholder characteristics (Figure 4). These advancements
have practical implications for urban planning, as they address dis-
parities in bus network usage and support the goals for sustainable
urban transit by aligning public transportation strategies with en-
vironmental policies, thereby promoting green initiatives without
compromising user satisfaction. See details in Appendix B.5, B.6,
Figure 5(e).Figure 6(c).

5 Interfaces and Deployment

Our system integrates GIS-based Attention-Cluster-GCN with Du-
eling Double Deep Q Network (Dueling DDQN), a form of RL,
enhancing the web-based app deployment of urban travel recom-
mendations across various cities. This integration allows the sys-
tem to dynamically adapt and optimize recommendation strategies
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based on user interactions and environmental changes, ensuring
high-quality, context-aware suggestions for urban mobility and
green travel. The web-based app interface demonstrates the fol-
lowing functionalities (Figure 3): (1) Clustering recommendations
for green attractions based on mapping to a single bus stop; (2)
Plant POI recommendations, reflecting urban spatial heterogene-
ity, enhanced gamified experience with AR-based realistic virtual
plants; (3) Integration of green attraction recommendations with
real-time transportation information for seamless travel planning;
(4) A localized recommendation system tailored to user preferences
for nearby green attractions. (5) The user scenarios in real-world
deployment at the bus station: Applying this framework integrates
Attention-Cluster-GCN with Dueling DDQN to dynamically ad-
just attention weights based on user feedback and environmental
data. The system prioritizes key urban features and POIs, adapts
to user preferences and urban changes, and provides optimized
route and POI recommendations. Leveraging RL, it updates sugges-
tions in real time considering user feedback related to traffic, public
transport, and user location, addressing urban spatial heterogene-
ity effectively. By combining dynamic clustering and personalized
recommendations, the app promotes green travel, efficient urban
planning, and an engaging user experience.

Real-Time Responsiveness & Computational Load. Given
the latency-sensitive nature of transport suggestions, our system
splits processing into two stages. In the (1) offline preprocessing
stage (batch updates, <1 hour), we build and update spatiotemporal
clusters using multi-scale and temporal embeddings, precompute at-
tention scores into lookup tables, and train or fine-tune the Dueling
DDQN model on accumulated interaction data. For (2) online pro-
cessing (end-to-end <200 ms): encoding the user’s current location
and time into a state vector (= 5 ms), retrieving precomputed cluster
and attention weights (= 10 ms), and performing a Dueling DDQN
forward pass to generate top-K recommendations (= 50 ms on a
mid-range GPU/CPU). Benchmarking on a standard edge server
shows an average end-to-end latency of 150 ms, peak memory
usage of 600 MB, and throughput of 120 queries per second. See
details in Appendix B.6, B.7 and Limitations in Appendix C.

6 Conclusion

Our approach significantly enhances urban travel efficiency by
leveraging advanced graph clustering with attention and Q-Learning
in data pipeline for green attraction recommendations in public
transportation. Achieving results that outperform other baselines,
this model excels in precision, scalability, and adaptability. By incor-
porating an attention mechanism into the Cluster-GCN with Duel-
ing DDON policy, it effectively identifies and emphasizes structural
patterns, enhancing graph clustering performance across multiple
scales of spatial heterogeneity and driving improvements in urban
sustainability and information management.
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Appendix
A Training Details

Numerical experiments validate the proposed models. The model
runs on a desktop with a 16-core Intel® Core™ i7-13700KF CPU
(5.40-GHz), NVIDIA® GeForce RTX™ 3070 Ti GPU (8 GB), and 32
GB RAM via implementation in the PyTorch library. Training on the
GPU lasts about 16 hours for 100 epochs, with a mini-batch size of
16. For benchmarking, we replicated and reproduced outcomes from
state-of-the-art baselines. Our model with multi-scale clustering
and an attention network underwent 100 and 300 epochs of training,
respectively. The learning rate I, starts at 10~’. The maximum
cluster number K is 8, with a trade-off parameter f at 12 and a
discount rate y set to 1.3 x 1072, The low computational intensity
in training time and hardware enhacing practical scalability.

B Detailed Experimental Analysis
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Figure 5: (a) Recommendation accuracy: Precision@K for
global vs. personalized Dueling DDQN. (b) Comparison of
clustering quality metrics between global and personalized
models. (c) Absolute improvements in Precision@K and clus-
tering metrics due to personalization. (d) Cold-start scenario
performance over the first five recommendations. (e) Cluster-
GCN attention weights variation by user groups.

B.1Recommendation Accuracy: Precision@K. In Figure 5(a),
Precision@K for Global vs. Personalized Dueling DDQN shows the
latter consistently higher. Both models peak at K = 5,7 (Global
~ 0.58,0.60, Personalized ~ 0.62), and the gap grows from =~ 0.02 at
K =1to~ 0.05at K = 9. A minimum occurs at K = 3 (Global ~ 0.50,
Personalized ~ 0.53), underscoring the benefit of user embeddings
for adaptive ranking.
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B.2 Clustering Metrics Comparison. In Figure 5 (b), we com-
pare three clustering quality metrics—SS, DBI, and ARI—between
the global and personalized clustering pipelines. The personalized
approach achieves a higher average in 10 times for all cities than the
global approach in SS (0.50 vs. 0.44) and ARI (0.45 vs. 0.42), while
yielding a lower (better) DBI (0.18 vs. 0.20). Error bars indicate one
standard deviation over repeated runs. These results confirm that
attention-driven, personalized embeddings produce tighter, more
coherent clusters of POIs.

B.3 Personalization Improvement. In Figure 5 (c), it summa-
rizes the absolute improvements gained by personalization over
the global baseline. On average, Precision@XK increases by 0.024, SS
improves by 0.06, DBI by 0.02, and ARI by 0.03. The largest relative
gain appears in clustering coherence (SS), highlighting the critical
role of user-specific information in grouping relevant POIs.

B.4 Cold-Start Scenario Performance. Figure 5 (d) shows the
recommendation accuracy for the first five suggestions made to new
users, plotted with mean and standard deviation. Initial accuracy
starts at 0.52 and dips to 0.49 for the forth recommendation, before
recovering slightly. The error bars (£0.03-0.04) reflect variability
due to limited interaction data. These results suggest that while cold-
start performance is inherently lower, our model still achieves a near
0.5 accuracy within five interactions, demonstrating reasonable
effectiveness even with minimal user history.

B.5 Attention Weights Variation by User Group. In Fig-
ure 5(e), attention heatmaps (rows: users; columns: cluster indices)
are shown for two groups. Residents concentrate on commute-
related clusters (yellow) with moderate variance. Tourists focus on
attraction-rich clusters, displaying higher, more dispersed weights.
This clear separation demonstrates that the attention mechanism
captures group-specific preferences for tailored recommendations.

B.6 M3-Specific Evaluation Metrics. To verify that M3 effec-

tively addresses Multi-Scale, Multi-Purpose, and Multi-Stakeholder,

we define corresponding metric groups:

e Multi-Scale Consistency (MSC): Measures clustering qual-
ity at each geographic scale s € {s,[}. MSCs = \C_1;| 2cec, SS(0),
Apmsc = IMSCs —MSC;|. Alow Apisc indicates balanced per-
formance across scales.

e Multi-Purpose Effectiveness (MPE): For each user in-
tent p € {relax, exercise, learn}, compute Precision@K and
Recall@K: MPE,, = (Precision@Kp, Recall@Kp) . Variance
across intents oppg should be small to demonstrate stable
performance.

e Stakeholder Fairness Index (SFI): Let Ryoyrist and Ryegident
be average Fl-scores for two groups. Define SFI = 1 —
[Riourist r“)‘de“" . Values close to 1 indicate equitable recom-

max(R.
mendations.

Figure 6(a) plots Apsc for ten cities. Okinawa has the small-
est Apsc ~ 0.001, Keelung the largest (= 0.020), with Chiang
Mai (~ 0.018) and Melaka (~ 0.014) also high. Others like Tainan
(= 0.005), Hsinchu (> 0.010), Cheongju (=~ 0.0045), New York
(= 0.012), London (= 0.007), Tokyo (= 0.0135) are mid-range. This
confirms M3’s robust clustering across scales, despite a few extreme
cases. Figure 6 (b) presents the Stakeholder Fairness Index (SFI)
for each model, plotted on a log scale to highlight fine-grained
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Figure 6: (a) Ayisc across cities. (b) Stakeholder Fairness Index
(SFI) comparison across models. (c) Multi-Purpose Effective-
ness (MPE) with Precision@K across Cities. (d) Models radar
plot in Top-K POI Precision, Serendipity, and User Engage-
ment, Generalizability, Personalization. (e¢) Graph Construc-
tion Time (GCT) vs. number of nodes across cities. (f) Infer-
ence latency vs. batch size. (g) Memory footprint vs. graph
size. (h) Throughput under load. (i) End-to-end latency dis-
tribution by stage. (j) Memory usage by models.

differences. Our proposed M3 achieves the highest fairness (SFI =
0.98), followed by GCRL (=~ 0.95), DDSGNN (= 0.93), and TSP-GNN
(= 0.92). Classic GCN variants (e.g. Cluster-GCN, GraphSAINT)
and attention-based models (e.g. GaAN) exhibit intermediate SFI
values (0.89-0.91), whereas simpler baselines (GMM, GATT) fall
below 0.87. These results confirm that M3 delivers the most equi-
table recommendations between tourists and residents, with GCRL
as the closest competitor. Figure 6(c) displays Precision@K and
Recall@K for Relax, Exercise, and Learn across ten cities. Exercise
peaks at Precision~ 0.59 (NYC) and Recall~ 0.57 (Chiang Mai); Re-
lax records Precision~ 0.52-0.58, Recall~ 0.48-0.56; Learn shows
Precision~ 0.51-0.58, Recall~ 0.47-0.54. This confirms M3’s sta-
ble, high-quality recommendations across purposes and locations.
Figure 6(d) contrasts five diversity metrics—Precision, Serendip-
ity, Engagement, Generalizability, Personalization—between M3
and eleven baselines. M3 outperforms all, especially in Engage-
ment and Generalizability, with GCRL second, confirming M3 not
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only achieves superior accuracy but also delivers the most novel,
engaging, adaptable, and personalized recommendations.

B.7 Scalability and Robustness Evaluation. While M3 per-
forms well on moderate city graphs, we must demonstrate scalabil-
ity as data volumes grow. (1) Graph Construction Time: Time
to build spatiotemporal graph as a function of number of nodes N
and edges E. (2) Inference Latency End-to-end online recommen-
dation time vs. graph size and batch size, measured in milliseconds.
(3) Memory Footprint: Peak RAM/VRAM usage during cluster-
ing and Dueling DDQN inference, reported for increasing N. (4)
Throughput: Queries per second supported under load.

Figure 6(e) plots graph construction time vs. number of nodes
N € {103, 10% 10%} on a log-log scale. Cheongju peaks at ~ 30s,
NYC at = 15s; all cities span 0.3-0.6s for 10°> and 15-30s for 10°.
Figure 6(f) shows inference latency for B € {16, 32, 64}. M3 consis-
tently achieves the lowest latency (=150 ms at B = 16, rising only
to = 160 ms at B = 64), demonstrating its efficiency and scalability.
GCRL is the second fastest: 285 — 310ms; while other methods:
300-450ms range and exhibit a roughly linear increase with batch
size. Figure 6(g) reports memory footprint vs. N. Usage grows
from 380-470MB at 10° to 510-600MB at 10°; Okinawa/Chiang Mai
~ 600MB, NY/London ~ 510MB. This confirms that M3’s memory
requirements scale predictably across diverse urban contexts. Fig-
ure 6 (h) plots the processed queries per second against incoming
load (30-150 gps) for M3 and eleven baselines. M3 (gold) exhibits
the highest throughput, scaling linearly from ~24 qps processed at
30 incoming to ~120 gps at 150 incoming. GCRL (orange) follows
closely, processing ~22-110 gps over the same range. Other models
remain below 100 gps at peak load, confirming that M3 delivers the
best end-to-end serving capacity under heavy query traffic. Fig-
ure 6 (i) presents the latency distribution for the three stages of our
online pipeline—encoding, lookup, and inference—using boxplots
over 100 runs. Encoding (=5 ms) exhibits minimal variability (IQR
~3-7 ms), lookup (%10 ms) shows moderate spread (IQR ~8-12 ms),
and inference (=50 ms) has the highest median (*50 ms) and vari-
ability (IQR ~45-55 ms, with occasional outliers up to ~70 ms). All
stages remain well under the 200 ms end-to-end target, confirming
the system’s suitability for real-time recommendations. Figure 6
(j) compares the peak memory footprint of twelve models. Our M3
has the lowest requirement at approximately 600 MB, with GCRL
a close second at around 650 MB. Other GNN and clustering base-
lines consume between 700 MB and 800 MB, peaking with GaAN
at about 790 MB. These results confirm that M3 offers the most
memory-efficient deployment among all evaluated methods.

C Limitations

Despite M3’s strong empirical performance, it has several limita-
tions: (1) potential oversampling bias in POI balancing; (2) depen-
dence on bus-stop mapping, limiting applicability in cities without
comprehensive bus networks; (3) grid-cell collisions when multiple
POIs occupy the same cell; (4) sharp cold-start performance decline
(accuracy drops to 0.49 by the 4th suggestion)—indicating that early-
stage user preference modeling requires further enhancement; and
(5) the global setting of reward-weight hyperparameters A5, As, and
Ay does not account for differing priorities among stakeholders
(e.g., policymakers versus end-users).
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