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Abstract

This study tackles construction labor shortages by introducing
a robotic brick assembly system using a mobile manipulator. It
bridges CAD models and real-world construction through a Design-
to-Construction workflow. The proposed Graph Q-Learning (GQL)
framework enhances automated brick assembly in complex designs
by overcoming the limitations of traditional graph search methods.
A Graph Attention Network + Deep Q-Network (GAT-DQN) archi-
tecture dynamically models inter-brick relationships, prioritizing
structurally critical connections to optimize assembly placement
and improve overall stability.
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1 Introduction

In recent years, the construction industry has increasingly faced
labor shortages, driving the need for robotic integration to maintain
efficiency and productivity [Stumm et al. 2016]. This paper presents
anovel approach to brick assembly, a critical task in construction, by
bridging the gap between computer-aided design (CAD) and physi-
cal construction through the adoption of Design-to-Construction
with robotic mobile manipulator in graph Q-Learning.

Our research focuses on the use of graph data structures to
enhance the assembly sequence of bricks in complex archi-
tectural designs, thereby optimizing the automatic construction
process, such as robotic assembly [Atad et al. 2023], navigation,
and planning (Fig. 1). Despite the advancements in robotic brick
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assembly, most existing research has not transitioned beyond labo-
ratory settings to practical, industrial applications[Funk et al. 2022].
The study in [Tian et al. 2022] provides a theoretical framework for
assembly planning using physics-based simulations, optimized for
industrial settings and complex assemblies with rotational compo-
nents. However, it lacks the on-site adaptability necessary for
construction environments. To overcome the limitations of tradi-
tional search algorithms like Breadth-First Search (BFS), Depth-First
Search (DFS) which often fail to maintain structural integrity in
complex arrangements, we employ Graph Q-Learning (GQL) [Nie
et al. 2023]. Our GAT-DON enhances the structural integrity and
operational efficiency of automatic brick assembly, significantly
outperforming traditional methods like Graph Convolutional Q-
Network (GCQN) and standard DQN with GNNs. It demonstrates
remarkable adaptability to complex architectural designs, thereby
promising to promote automatic construction with contributions
to assemble complex brick constructions robustly and efficiently:

e We integrate Graph Attention Networks with the Deep Q-
Networks (GAT-DQN) model to specifically address the dy-
namic and complex challenges in robotic brick assembly
without multi-view limitations from the vision-based method.

e We employ robust metrics like the Topological Stability Index
and Structural Integrity to guide the continuous optimization
of the model, enhancing placement precision, singularity
avoidance, and efficiency in decision-making (Fig. 2).

2 Method

System. We model the system by employing a Graph Q-Learning
(GQL) framework (Fig. 2). This framework combines Graph Atten-
tion Networks (GAT) with Deep Q-Networks (DQN) to dynamically
adjust relationships between nodes (bricks). By graph modeling
with information on physical attributes (supported and unsup-
ported cases depends on reasonable structure designs) and topo-
logical relationships of bricks, this integration not only improves
decision-making for optimal brick placement but also ensures the
structural integrity of the assembly in learning, offering a robust
solution to the challenges in complex architectural designs.

After translating the structural model into a graph, each node
within this graph represents a brick, and the edges capture the essen-
tial spatial and mechanical relationships critical for the stability. We

apply a GAT to extract features. hgl) € RF be the feature of node i at
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Figure 1: The automatic brick construction scenario for com-
plex designs showcases robotic assembly, navigation, and
planning via mobile manipulator.
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Figure 2: The system leverages graph Q-learning for efficient
brick assembly, transforming CAD models into structural
graphs. GAT-DON guides a mobile manipulator, enabling
seamless Design-to-Construction integration where design-
ers directly generate executable construction plans.

Table 1: Performance of Graph-Based Models in Brick As-
sembly. Average results over five independent runs (mean =+
standard deviation).

GNNPG DFS+SC

0.90+£0.01  0.74+0.025  0.55+0.03
0.11£0.005  0.07£0.007  0.05£0.007

Metric GAT-DQN  DQN with GNNs BFS+SC

0.92+0.01
0.15+0.005

0.87+0.012
0.12+0.005

Entropy of Action Distribution (H)
Topological Stability Index (uin(L))
Path Efficiency () 0.75:0.03 0.7020.03 0.68£0.035  0.57£0.05  0.43:0.05
Structural Integrity (Sintcg) 0.80+0.02 0.75:0.02 0.74£0.025  0.67+0.04  0.55+0.05
Completion Time (seconds) 12015 13526 130+5 192+10 18029
Accuracy of Placement (Success Rate) ~0.98+0.005 0.95:0.008 0.94£0.007  0.88+0.02  0.75+0.03

layer [ (layer = 0, ..., L-1):h{"*)) = o(szNi o) Wb hj.”), al) =

softmax (LeakyReLU(a(l)T[W(l)h,(l) | W(l)h;'l)]))'

Here, W(!) € RF'*F and a(D) € R%" are the layer-specific learn-
able parameters: W: feature projection matrix at layer La®):
attention weight vector at layer I. By indexing W and a with the
layer superscript (I), we clearly distinguish between the different
“learnable weight matrices” used in each GAT layer. The final node
embeddings hl(L) are then passed to the DQN for decisions. a;;
are the attention coefficients determining the significance of node
J’s features for node i, and N; represents the set of neighbors of
node i in the graph. The function o denotes a non-linear activation
function, such as sigmoid or ReLU, and a’ is a parameter vector
crucial for computing the attention coefficients.

3 Experiments

3.1 Evaluation Metrics.

Several key metrics evaluate the GAT-DQN system’s performance
in brick assembly and path planning, capturing decision quality,
structural stability, learning dynamics, and efficiency: Entropy of
Action Distribution: H = — }; p(als) log p(als) — measures pol-
icy exploration; higher entropy indicates broader strategy search.
Topological Stability Index: A, (L) — the smallest eigenvalue of
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the Laplacian, reflecting assembly graph robustness. Accuracy of

1 vN
Placement: Aplace = N 2t \/(xi - x;)z +(yi - y,{)z +(zi - Z,{)2
— measures alignment precision between intended and actual posi-
tions. Path Efficiency: P,

1
f = =————— — favors shorter, more
Z,T:1 d(Xt,th) ’

direct robot trajectories. Completion Time: Tcomp = tend — Lstart
— total construction time; lower is better. Structural Integrity:

Sinteg = % Zfi (o7 = )% — evaluates variance in stability scores

across bricks. These metrics enable a holistic evaluation of learning
and robotic control.

3.2 Model Comparisons.

In the evaluation of graph-based models for automatic construction,
particularly the brick assembly, mobile navigation and manipulator
path planning, the GAT-DQN model demonstrates superior per-
formance when compared to other methods such as DQN with
Graph Neural Networks (GNNs), Graph Neural Network Policy
Gradient (GNNPG), and DFS/BFS. Our experimental results for
average in 5 times of each training, summarized in Table 1, re-
veal that GAT-DON achieves higher scores across a range of key
metrics, improving performance over baselines. GAT-DQN outper-
forms in metrics such as Path Efficiency (Pegr), reflecting a more
optimal navigation through the assembly sequence, and Structural
Integrity (Sinteg), indicating a more robust assembly under various
load conditions compared to previous methods.

4 Conclusions

Our system applies GQL to robotic construction, using GAT com-
bined with DQN to improve the adaptability and efficiency in plan-
ning, navigation, and brick assembly with the mobile manipulator.
Initially trained in a simulated environment, the GAT-DQN model
learns optimal brick assembly and placement strategies from graph-
structured data that models the construction plan. This training
focuses on robust policy formulation that accounts for physical
constraints and the targeted final structure in automatic assembly.
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