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Figure 1: The system architecture. We integrate CAD/CAM with robotic brick assembly using graph-based few-shot contrastive
reinforcement learning with DASTGCN, SNN, and DDPG. This approach improves decision-making and strategies for sparse
rewards, enhancing the automated adaptation and robust assembly capabilities of the manipulator for varied geometric designs.

Abstract
With the integration of robotic manipulation into digital fabrication,
the convergence of Computer-Aided Design and Manufacturing
(CAD/CAM) faces new challenges. The highly customized nature
of architectural design results in diverse brick shapes and often
sparse data within categories, posing significant impediments in
robotic assembly tasks to learn efficiently from limited samples
about new design types. Challenges include structure support judg-
ment and noise interference in simulating assembly processes with
complex Spatial-Temporal Graph (STG) relationships, as well as
lengthy CAD iteration cycles, and CAM structural testing prac-
tice leading to sparse rewards. Our innovative robotic assembly
of geometric brick utilizes graph-based few-shot reinforcement
learning with Denoising Attention STG Convolutional Networks,
Siamese Neural Networks, and Deep Deterministic Policy Gradient
with Differentiable Energy Minimization to enhance operational
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efficiency and robustness. Our method outperforms in the aspects
of STG, few-shot learning, and reinforcement learning baselines,
and the effectiveness of modules is demonstrated in an ablation
study. This system enables designers to translate complex designs
into automation for diverse assembly patterns, ensuring the manip-
ulator’s precise placement, stability, and aesthetics, even in highly
adaptable conditions, empowering efficient collaboration of the
users, including the designer, engineer, manufacturer, etc.

CCS Concepts
• Applied computing→ Computer-aided design.
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1 Introduction
In the rapidly evolving construction industry, the challenge of inte-
grating robotic technologies with advanced computer-aided design
(CAD) to facilitate and optimize physical building tasks has become
increasingly critical [Stumm et al. 2016]. This paper introduces
a cutting-edge approach that harnesses the convergence of CAD
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and computer-aided manufacturing (CAM) with robotic systems to
enhance the assembly of geometric bricks in diverse and intricate ar-
chitectural designs. By leveraging graph-based data structures and
innovative learning methodologies, our research aims to streamline
and refine the assembly processes, ensuring high precision and
operational efficiency in automated construction. Current method-
ologies in robotic assembly, have struggled to transition from con-
trolled laboratory environments to actual construction sites [Atad
et al. 2023]. This is primarily due to the limitations inherent in
traditional learning algorithms (e.g., pre-training, fine-tuning, and
transfer learning), which fail to effectively handle the complexity
and variability of architectural designs found in real-world scenar-
ios. To address these challenges, our approach (Fig. 1) employs
a novel spatiotemporal graph-based few-shot learning technique
termed Denoising Attention Based Spatial-Temporal Graph Con-
volutional Networks (DASTGCN)[Guo et al. 2019], which adapts
quickly to new design types by leveraging minimal data samples.
The method utilizes the inherent temporal and spatial relationships
within construction sequences to adjust to new designs rapidly.
Moreover, we introduce a robust learning framework that incorpo-
rates denoising mechanisms within our Siamese Neural Networks
(SNN) [Chicco 2021], and apply the features to Deep Deterministic
Policy Gradient (DDPG) [Lillicrap et al. 2019] models with Differ-
entiable Energy Minimization (DEM). These features significantly
enhance the learning efficiency and decision-making quality of our
system under conditions characterized by sparse data and high
variability in design structures. By employing innovative sampling
strategies like contrastive and CAD sampling, our method effec-
tively handles the data, which is common in highly customized
design and construction tasks. Our approach focuses on:

• Enhanced Data Processing and Sampling: By implement-
ing advanced sampling methods, our system efficiently pre-
process complex CAD data, improving the quality and us-
ability of data for learning applications, reducing computing
costs and data requirements.
• Feature Extraction and Robust Spatiotemporal Graph
Few-Shot Learning: Utilizing DASTGCN, our system ex-
tracts critical features from limited data in the learning pro-
cess, allowing for rapid adaptation to new and complex de-
signs in CAD/CAM construction.
• Reinforcement Learning with State Representations
and Differentiable EnergyMinimization: This technique
optimizes long-term operational strategies, enhancing the
robot’s ability to perform in diverse construction scenarios
while considering physical constraints of mobile manipulator
by Differentiable Energy Minimization (DEM), and maintain-
ing accuracy and robustness in assembly capabilities.

2 Method
2.1 Data Preprocessing and Sampling
2.1.1 Dataset. In the pursuit of integrating CAD/CAM for robotic
assembly with geometric bricks, we address the problem of assem-
bly using spatiotemporal graph-based models for complex archi-
tectural structures. After architects model the brick designs and
converting them into mesh, we employ a graph representation for

Figure 2: Samples of customized CAD for brick assembly in
diverse types and graphs with interfaces.

each brick modeled as a node with attributes encapsulating its po-
sition, shape, vertex coordinates, and interface forces as edges, for-
mulated as G = (V, E,X, F) into a dataset D, whereV represents
vertices (bricks), E denotes edges (structural support interactions),
X ∈ R𝑛×𝑑 captures the positional and shape features of bricks, and
F ∈ R𝑚×𝑘 describes forces and interface attributes across edges.

2.1.2 Task. Regular assessments in both controlled environments
and actual construction sites test models against benchmarks of
geometric brick types such as Flemish and Stretcher Bond designs.
These designs often include intricate architectural features like
curved or spherical openings for doors and windows, even in hol-
low hexagonal brick (Fig. 2). Our primary goal is to assess the
precision with which the robotic manipulator positions each brick,
ensuring millimeter-level accuracy in brick placements and struc-
tural stability, while achieving the default and customized design
and fabrication with various requirements.

2.1.3 Contrastive and CAD Sampling. To select data samples from
whole structured bricks planning to emphasize differences between
positive and negative pairs within a learning model by contrastive
sampling, it is crucial for training discriminative models. This
process (Fig. 1) involves various strategies like (1) Random Sam-
pling: {𝑥𝑖 }𝑛𝑖=1

iid∼ D, where samples 𝑥𝑖 are randomly chosen
from a dataset D; (2)Semi-Hard Negative Sampling: {(𝑥𝑖 , 𝑥 𝑗 ) |
𝑑 (𝑥𝑖 , 𝑥 𝑗 ) < 𝜃, 𝑥𝑖 ∈ Xpos, 𝑥 𝑗 ∈ Xneg}, which selects pairs (𝑥𝑖 , 𝑥 𝑗 )
such that the distance metric 𝑑 (𝑥𝑖 , 𝑥 𝑗 ) is less than a threshold 𝜃 ;
and (3) Hard Negative Sampling: {(𝑥𝑖 , 𝑥 𝑗 ) | 𝑑 (𝑥𝑖 , 𝑥 𝑗 ) < 𝜖, 𝑥𝑖 ∈
Xpos, 𝑥 𝑗 ∈ Xneg}, where pairs are chosen similarly but the distance
must be less than a smaller threshold 𝜖 . Here, 𝑥𝑖 and 𝑥 𝑗 belong to
sets of positive Xpos and negative samples Xneg, respectively. CAD
sampling focuses on extracting representative samples from the
diverse types of customized CAD model 𝐶 (Fig. 2), including (1)
Geometric Sampling: 𝑥 is sampled based on geometric features
of 𝐶 , (2) Topological Sampling: 𝑥 is sampled from topological
relations within𝐶 , and (3) Attribute Sampling: 𝑥 is sampled from
the attribute characteristics like structural and forces properties of
𝐶 . Ultimately, we concatenate the representative samples from con-
trastive and CAD sampling. This strategy aims to provide diverse
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Table 1: Model Performance Comparison

(a) Spatiotemporal Graph
Learning

Model MSE MAE TCC

STGCN 0.040 0.15 0.82
GAT 0.035 0.14 0.85
PTDNet 0.030 0.15 0.81
ASTGCN 0.031 0.12 0.89
GraphSAGE-GAT 0.026 0.15 0.90
Ours 0.025 0.10 0.92

(b) Few-Shot Learning

Model Accuracy F1 Score NMI Triplet Loss

SNN 0.75 0.70 0.60 0.25
LEO 0.79 0.74 0.67 0.20
ProtoNet 0.80 0.75 0.70 0.24
Ours 0.85 0.80 0.75 0.18

(c) Graph Reinforcement
Learning

Model 𝑅 𝑟 𝑐

DDPG-GNN 160 1.6 0.25
DDPG-GAT 162 1.62 0.23
DDPG-PTDNet 159 1.59 0.22
MA-GCN 157 1.57 0.28
GNN-UCB 155 1.65 0.23
Ours 170 1.7 0.20

and challenging datasets that encapsulate the structural complexi-
ties and design variabilities inherent in robotic brick assembly tasks,
thereby enhancing the model’s learning efficiency and robustness.

2.2 Feature Extractor and Few-Shot Learning
2.2.1 ASTGCN. After the sampling process, the feature extrac-
tion is conducted by the ASTGCN and autoencoders (Fig. 1). The
spatial-temporal graph is constructed in ASTGCN using the inverse
kinematics of the manipulator and the inverse reachability map
of the vehicle based on the bricks’ central positions. This graph
construction is crucial for accurately modeling the physical interac-
tions required for the robotic assembly. This network processes two
sets of inputs: long-term historical data 𝑋𝑙 and short-term immedi-
ate data 𝑋𝑠 . These inputs are transformed through several layers of
Graph Convolution Networks combined with convolutional layers
(GCN+Conv), followed by a combination of Spatial Graph Attention
(SGAT) and Temporal Graph Attention (TGAT) mechanisms. The
whole module is called the ST block. The outputs from ASTGCN
represented as 𝑌𝑙 and 𝑌𝑠 , correspond to the processed long-term
and short-term data inputs, respectively. These outputs are com-
pared against their respective targets to minimize the discrepancy
between 𝑌𝑙 and 𝑌𝑠 , utilizing RMSE as the loss function.

2.2.2 Autoencoders with Graph Laplacian Regularization(GLR). The
features processed are further refined through graph autoencoder
structures that incorporate Graph Laplacian Regularization [Ando
and Zhang 2006]. This regularization technique imposes a smooth-
ness constraint on the feature representation by penalizing the
Laplacian quadratic form: 𝐿 = 𝐷 − 𝐴, where 𝐿 is the Laplacian
matrix, 𝐷 is the diagonal degree matrix, and 𝐴 is the adjacency ma-
trix of the graph. Regularization helps retain essential topological
characteristics, promotes generalization, and reduces overfitting.

2.2.3 Siamese Neural Networks. Following the feature extraction,
the Siamese Neural Networks (SNN) utilize these refined features
for few-shot contrastive learning (Fig. 1). The SNN focuses on
learning from minimal data samples by comparing pairs of similar
and dissimilar instances, thus optimizing the model’s ability to gen-
eralize from a few examples. This is essential for quickly adapting
to new types of brick designs with limited available data. To adapt
to the data sparsity for new brick designs, we implement metrics
such as Accuracy, F1 Score, Normalized Mutual Information
(NMI), and Triplet Loss among the Denoising-based ASTGCN
(DASTGCN) models with shared weights within the SNN structure.

2.3 Denoising ASTGCN and Robust Learning
2.3.1 DropEdge and GAT in SNN. The integration of DropEdge
[Rong et al. 2019] and Graph Attention Networks (GAT) [Veličković
et al. 2018] with the DASTGCN plays a pivotal role in the SNN archi-
tecture (Fig. 1). DropEdge randomly removes a certain percentage
of edges from the input graph before each training epoch. This
randomness helps prevent overfitting and makes the model more
generalizable, effectively acting as a data augmentation that intro-
duces variability and reduces the likelihood of learning spurious
correlations: 𝐺 = 𝐺 − {𝑒𝑖 𝑗 | 𝑒𝑖 𝑗 ∈ 𝐸, 𝑝 < 𝜏} , where 𝐺 represents
the modified graph,𝐺 is the original graph, 𝐸 is the set of edges, 𝑒𝑖 𝑗
is an edge between nodes 𝑖 and 𝑗 , 𝑝 is a randomly generated proba-
bility, and 𝜏 is the threshold probability for edge removal. Simultane-
ously, GAT is employed to dynamically focus on the most important
nodes within the manipulated graph structure, thereby allowing
for a more nuanced understanding and enhancement of the impor-
tant features through learnable attention coefficients. The attention
mechanism helps in prioritizing nodes based on their contribution
to task performance, effectively learning a weighted representation
of local neighborhoods: ℎ′

𝑖
= 𝜎

(∑
𝑗∈N(𝑖 ) 𝛼𝑖 𝑗𝑊ℎ 𝑗

)
, where ℎ′

𝑖
is

the updated feature of node 𝑖 , 𝜎 is a nonlinear activation function,
N(𝑖) denotes the neighbors of node 𝑖 , 𝛼𝑖 𝑗 are the attention coeffi-
cients learned by the network,𝑊 is a learnable weight matrix, and
ℎ 𝑗 are the features of the neighboring nodes. This approach repre-
sents a significant advancement over traditional methods, offering
a robust solution to the challenges posed by complex architectural
designs, enhancing the denoising capability.

2.4 GRL with State Representations
2.4.1 Deep Deterministic Policy Gradient. For the robotic assem-
bly tasks, the system employs a mobile manipulator that oper-
ates within a continuous state space and a discrete action space.
The DDPG approach is applied to optimize motion costs, facili-
tate dynamic adaptation to continuously varying design config-
urations, and ensure structural stability from the bottom up in
the predetermined brick wall designs. The DDPG formulation is
as follows: 𝛿𝑡 = 𝑟𝑡 + 𝛾𝑄 (𝑠𝑡+1, 𝜇 (𝑠𝑡+1 |𝜙𝜇 )) − 𝑄 (𝑠𝑡 , 𝑎𝑡 |𝜙𝑄 );𝜙𝑄

′ ←
𝜏𝜙𝑄 + (1 − 𝜏)𝜙𝑄 ′ ;𝜙𝜇′ ← 𝜏𝜙𝜇 + (1 − 𝜏)𝜙𝜇′ , where 𝑠𝑡 and 𝑎𝑡 denote
the state and action at time 𝑡 , 𝑟𝑡 is the reward, 𝑄 represents the
critic network, 𝜇 is the actor network, 𝜙𝑄 and 𝜙𝜇 are the network
parameters, and 𝜏 is the learning rate.

2.4.2 State and Action Space Representation. The state space en-
capsulates the physical configuration of the assembly process, in-
corporating vectors for each brick’s centroid coordinates, vertex
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Table 2: Ablation Study: DASTGCNw/ DropEdge, GAT, & GLR

Configuration Accuracy F1 Score NMI Triplet Loss

Baseline (Ours w/o all denoising) 0.80 0.75 0.68 0.22
Ours w/o Graph Laplacian Regularization 0.81 0.76 0.72 0.20
Ours w/o DropEdge 0.82 0.76 0.71 0.21
Ours w/o GAT 0.84 0.78 0.73 0.19
Ours 0.85 0.80 0.75 0.18

coordinates, and orientation matrices capturing rotational degrees
of freedom. The vectors detail mechanical forces like normal force,
friction, tension, compression, shear force, and torque, which are
crucial for ensuring structural stability. The action space is modeled
as a combination of discrete choices from predefined positions and
continuous adjustments in vectors, optimizing layout to minimize
motion costs and enhance precision: s𝑡 = [c, v, o, f] , a𝑡 = [p,Δv],
where c represents the centroid coordinates, v the vertex coordi-
nates, o the orientation matrices, f the mechanical forces, p prede-
fined positions, and Δv continuous adjustments. This comprehen-
sive approach ensures that the model captures necessary temporal
and spatial relationships in the graph data while adhering to the un-
derlying structural properties, significantly enhancing the overall
predictive performance and robustness of the robotic assembly.

2.4.3 Reward Shaping and Robust Policy Optimization. We modify
the reward function to guide the policy towards desired behaviors
and handle the sparse reward: 𝑟𝑡 = 𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)+𝜆 ·Penalty(𝑠𝑡 , 𝑎𝑡 ),
where 𝜆 is a weighting factor that balances the immediate rewards
and penalties to induce robust policy optimization. The execution
of the policy and the system feedback are crucial for the continuous
learning and adaptation of the robotic system: 𝑎𝑡 = 𝜇 (𝑠𝑡 |𝜙𝜇 ) +
𝜖, 𝜖 ∼ N(0, 𝜎), where 𝜖 represents noise added to the policy
action to explore the action space effectively, and 𝜎 denotes the
standard deviation of the exploratory noise.

2.4.4 Differentiable Energy Minimization. The DEM is enhanced
to incorporate complex robotic dynamics and environmental in-
teractions, ensuring precise control and efficient energy usage
in assembly. The energy function is extended to include terms
that represent the kinematic and dynamic constraints: 𝐸 (x, ¤x, ¥x) =∑𝑛
𝑖=1 𝑘𝑖 · exp

(
− | |x−x𝑖 | |

2

2𝜎2

)
+𝜆1∥J(x) ¤x∥2 +𝜆2∥ ¥x∥2,where x is the con-

figuration vector of the mobile manipulator, ¤x and ¥x are the velocity
and acceleration vectors respectively, J(x) is the Jacobian matrix of
the manipulator for inverse kinematics, and 𝜆1, 𝜆2 are weighting
factors for velocity and acceleration constraints.

3 Results
3.1 Model Comparisons.
The tables (Table 1) provide a comparison between our method
and baseline models using the specified metrics. Across all models
and metrics examined, Our Method consistently outperforms the
baselines, confirming its robustness and adaptability to different
learning paradigms in robotic brick assembly. Its superior perfor-
mance in handling complex geometric designs and learning from
limited examples highlights its potential for practical implemen-
tation in automated construction environments. In Table 1, Our
Method again shows superior performance, leading with the high-
est expected return (𝑅 = 170), average reward per episode (𝑟 = 1.7),

and the lowest convergence rate (𝑐 = 0.20). This indicates a more
efficient learning and decision-making process in graph-based re-
inforcement learning tasks, optimizing both short-term gains and
long-term strategies. DASTGCN enhances spatiotemporal feature
learning via DropEdge, GAT, and Graph Laplacian Regularization
in ST-GFSL, critical for structural fidelity in robotic brick assembly.
DropEdge improves generalization by reducing overfitting. GAT
boosts precision through focused feature weighting. Laplacian
Regularization smooths representations while preserving struc-
tural cues. Combined, these components yield the best performance
across accuracy, F1, NMI, and triplet loss (Table 2). Sim2Real is
achieved by integrating DASTGCN within an SNN-DDPG frame-
work to transfer learning from simulation to real-world brick assem-
bly. Spatiotemporal graph-based few-shot reinforcement learning
enables generalization under variability, bridging simulation-reality
gaps and supporting collaborative CAD/CAM workflows.

4 Limitations and Conclusions
Despite the advancements provided by our method, there are in-
herent limitations. The complexity of graph-based models and the
computational demand of ST-GFSL and GRL can limit real-time
applications. The implementation of CAD/CAM with DASTGCN,
SNN, DDPG, and Differentiable Energy Minimization (DEM) in
robotic brick assembly represents a significant step forward in the
automation of complex construction tasks with mobile manipulator.
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